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Abstract

This paper addresses the growth of a void in a nonlinearly creeping material in the presence of the void-surface
energy effect and void-surface diffusion driven by surface curvature gradients. Large strain finite element analysis of
the coupled problem indicates that microstructural variables (porosity and void aspect ratio), as well as macroscopic
deformation rates are strongly affected by the relative strength of the void-surface energy effect and the void-surface
diffusion process vis-a-vis the rate of creep deformation in the bulk of the solid. The phenomenon is characterized
by two-dimensionless groups, one measuring the strength of the surface diffusion process with respect to the nonlinear
creep deformation in the interior of the solid, and the other the magnitude of the surface energy of the void in relation
to the applied load and the size of the void. The computations reveal a rich variety of solutions that reflect a wide range
of external load, material, and geometric parameters. Classical void growth studies that ignore both surface diffusion
and surface energy effects are shown to recover only one case of this family of solutions. The computations also serve to
quantitatively evaluate recent constitutive theories for porous nonlinear materials that account for continuously evolv-
ing microstructure, but do not include surface diffusion or surface energy effects.
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1. Introduction

It is well-known that the growth of small voids in inelastic materials plays a central role both in ductile
fracture of metals at room temperature and creep rupture at elevated temperatures. Previous investigations
have dealt with void growth in both nonlinearly viscous solids (e.g., Budiansky et al., 1982; Needleman
et al., 1995) and materials deforming by rate-independent plasticity (e.g., see the reviews of Tvergaard,
1989; Needleman et al., 1992). The present investigation focuses on void growth in nonlinearly viscous sol-
ids, specifically of the power-law creeping type. For these materials, the work done to date has addressed
the evolution of the shape and size of voids with time. Budiansky et al. (1982) have obtained detailed solu-
tions for a void growing in an infinite viscous matrix under a variety of remote axisymmetric loading states.
More recently, Needleman et al. (1995) have considered the effect of void interaction and void shape change
on the void growth rates through extensive finite-element calculations, also under axisymmetric conditions.
The cell model employed by them is that of Needleman and Rice (1980) who studied growth of cavities
occurring by the combined action of grain-boundary diffusion and power-law creep in the adjoining grains.
Their analysis was employed by Sham and Needleman (1983) to study the effect of triaxial stressing on dif-
fusive cavity growth.

Although it is well understood that mass transfer over the void-surfaces is of great relevance in determin-
ing surface profiles, and indeed demonstrated through numerical computations (Subramanian and
Sofronis, 2001, 2002), in the studies to date on void growth, very little attention has been paid to the process
of surface diffusion over the void-surfaces. In the classical void growth models (e.g., Budiansky et al., 1982;
Needleman et al., 1995), the void shapes are affected only by the viscous deformation of the solid; recon-
figuration of the void-surface due to mass transport over it due to surface diffusion is completely ignored.
On the other hand, in the creep cavitation models (e.g., Needleman and Rice, 1980; Sham and Needleman,
1983), surface diffusion is assumed to be extremely fast leading to a void that always maintains a spherical-
caps shape. Chuang et al. (1979) developed models for diffusive cavitation that were not based on a quasi-
equilibrium void shape, and allowed the void shape to be determined as part of the solution; however, the
grains were assumed to be rigid. Thus, none of these models account for void shapes that result from the
concurrent action of void-surface diffusion and nonlinear bulk deformation. A notable exception to this is
the work of Suo and Wang (1994) and Wang and Suo (1997) who studied the interaction of void-surface
diffusion with the elastic deformation in the surrounding matrix under biaxial tension. These investigators
found that when the void-surface energy effect is dominant the void evolves to an equilibrium shape close to
an ellipse, whereas when the bulk elastic energy effect dominates the void never reaches equilibrium and
crack-like shape instabilities emerge. It should be noted though that the classical Laplace relationship
between the void curvature, void-surface energy, and the normal traction in the adjoining bulk material
(Herring, 1951; Rice and Chuang, 1981) was not enforced in any of these calculations.

Based on these results and those of Subramanian and Sofronis (2001, 2002), one concludes that the inter-
action between void-surface diffusion and bulk deformation mechanisms plays a vital role in determining
the void shape and size changes. Further, as length scales relevant to modern engineering applications shift
from microns to nanometers, surface energy effects and hence the void-surface traction take on increased
significance. For instance, in a material with a surface energy y, of 1 J/m? (a typical value for metals), nor-
mal tractions in the bulk material adjoining a void of radius 1nm are of the order of 1 GPa. Certainly, no
claim is being made here that the present continuum mechanics study will be applicable at the level of clus-
ters of atoms. However, it is emphasized that that surface energy effects will be more prominent as void size
decreases from tens of microns to hundreds of nanometers.

On the other hand, rigorous constitutive theories for the macroscopic response of nonlinearly deforming
voided materials in the absence of any void-surface diffusion or surface energy effects have been proposed
by Ponte Castaneda and coworkers (Ponte Castaneda and Zaidman, 1994; Kailasam and Ponte Castaneda,
1996; Ponte Castaneda, 1997; Kailasam et al., 2000). Apart from a relationship between the overall
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deformation rate of the solid and the applied loads, these constitutive theories also report evolution equa-
tions for the microscopic variables, such as porosity, void aspect ratio, and void orientation. It should be
noted that the constitutive descriptions of these works are derived from variational approximations, and
that their accuracy has not been evaluated in detail using numerical computations. It should also be noted
that an alternative approach—one that has the advantage of reducing to the Gurson model for high triax-
iality, but which is less general, allowing only the development of transversely isotropic symmetries—has
been proposed by Golaganu et al. (1993, 1994).

For a void subjected to remote uniaxial tension, the bulk creep deformation tends to elongate an initially
circular void (Budiansky et al., 1982), whereas the surface diffusion process over the void-surface acts to
maintain the circular shape. Further, void-surface energy considerations dictate that part of the work rate
delivered by the external loads in deforming the solid be expended on changing the size of the void (Subr-
amanian and Sofronis, 2001). In the present work, this competition between nonlinear creep deformation in
the bulk and void-surface diffusion during void growth is addressed in the presence of void-surface energy
effects. The normal tractions on the void-surface induced by the curvature of the void are accounted for in
the formulation of the relevant problem. As first derived elsewhere (Subramanian and Sofronis, 2001,
2002), the surface diffusion process and the void-surface energy effect are characterized by dimensionless
groups that measure their relative strengths with respect to the power-law creep process in the surrounding
matrix and the applied loads. The numerical computations which are performed using a large-strain for-
malism (Subramanian, 2001) are grouped in two sets: the first deals with the effect of creep nonlinearity
and porosity on the macroscopic deformation and void growth in the absence of void-surface diffusion
and energy effects, while the second elaborates on the effect of the surface diffusion and surface energy.
The computations yield the overall macroscopic deformation rates, as well as details of the evolution of
void size and shape, all of which are used for quantitative comparisons with the constitutive theories of
Ponte Castafieda and co-workers. All computations are performed on a unit cell with the deformation
occurring under plane strain conditions, and in both sets of studies, results are presented for different initial
unit cell porosities. A question that arises here is whether the present computation results which are con-
ducted for cylindrical voids arranged in a rectangular array are still valid for spherical voids arranged in a
rectangular array. Certainly, the deformation mechanisms that will be active will be identical in the two
cases. The surface diffusion process will be dependent on two principal curvatures in the three-dimensional
case, and the complexity of possible pore shapes is far greater in the three-dimensional case compared to the
two-dimensional case. However, the trends reported in this study should still hold in the three-dimensional
case, because the underlying deformation processes remain the same: The applied loads tend the distort the
solid and the void; the surface diffusion process tries to maintain the spherical shape of the void, whereas
the strength of the surface energy will dictate the energy expenditure to cause changes in void shape.

2. Material constitutive laws

The bulk material of the porous solid is incompressible, and undergoes finite deformation by power-law
creep governed by the constitutive equation:

D =3Cd"'s/2, (1)

where D is the rate of deformation tensor (the symmetric part of the velocity gradient), s is the deviatoric
part of the Cauchy stress ¢, . = 1/3s : s/2 is the equivalent stress, # is the creep exponent, and C = &/} is
the creep modulus with & and ¢, being material parameters in the uniaxial tension relation /& = (¢/a)".
Diffusion along the void-surface is driven by chemical potential gradients (Herring, 1951) such that

Jo = Zpd(7,k)/ds, (2)
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Fig. 1. Description of the initial/boundary-value problem.

where j,, is the volumetric flux per unit length along the void surface, 7, = D,6,Q/KT is the void-surface
diffusivity having dimensions of volume divided by stress per unit time, Dy, is the diffusion coefficient, 9, is
an effective thicknesses through which matter diffuses, k and y,, are respectively the curvature and the energy
of the void-surface, Q is the atomic volume of the diffusing species, K is Boltzmann’s constant, 7 is the abso-
lute temperature, and s is arc length along the void-surface (Fig. 1). Along the void-surface, matter conser-
vation dictates that

djpls) .
2 = 1 i(s) =0, 3)

where a(s) is the local void-surface expansion rate (Fig. 1) measured normal to the void-surface and is
positive when matter is deposited on the void-surface and negative when the void-surface is eroded. Here
it should be emphasized that & is not the velocity of any material point on the void-surface; it is simply the
rate at which mass is added to or removed from the void-surface.

Equilibrium at any arbitrary point on the void-surface is described by the standard Laplace equation
(Gurtin and Murdoch, 1975; Rice and Chuang, 1981; Freund et al., 1993) that relates the normal traction
o, from the adjoining bulk material to the local curvature k

an(s) = 7pk(s). )

In the present model, the surface tension 7, is assumed to be constant and therefore, the tangential stress on
the void-surface is zero (Rice and Chuang, 1981; Freund et al., 1993). A void that is concave when seen
from the bulk has positive curvature, and leads to tensile stresses in the adjoining bulk material.

3. The unit cell model

Void growth in a porous creeping solid is investigated under plane strain conditions by assuming
cylindrical voids arranged in a rectangular array. Owing to the symmetry in the deformation under tensile
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loading, the first quadrant of a unit cell containing a void was analyzed (see Fig. 1). At time ¢ = 0, the void
is circular of radius R, and the initial unit cell is a rectangle of dimensions L; X L,. Thus, the initial porosity
of the unit cell is f = nR*/4L,L, and the initial void aspect ratio wy = a»/a; = 1. In general, as the solid
deforms, the void changes shape and size, and its axes a; and a, vary with time. The symmetric arrangement
of the voids is maintained throughout the course of deformation of the solid under remotely applied stresses
o35 =033 =0, and 65 = S. Standard symmetry conditions were enforced on the axes of symmetry x; =0
and x, =0. The top face normal to the direction of stressing was required to remain horizontal during
deformation and free of shear traction. The right face was constrained to remain vertical with zero shear
stress and zero average normal stress. In all the results presented in this paper, S is positive.

The solution to the deformation of the voided material is obtained in time incrementally and the relevant
initial/boundary-value problem is set up as shown in Fig. 1. At every time step, the solutions process
addresses the deformation of the bulk material and the change of the void-surface due to surface diffusion.
The solution procedure involves the solution of three coupled problems in succession (Subramanian,
2001): In problem (i) the solution to the displacement increments over a time increment is obtained by solv-
ing for the bulk deformation of the unit cell under the externally applied tractions (load) and the void-sur-
face tractions induced by the void-surface curvature. The solution to this problem enforces equilibrium in
the bulk of the matrix and ensures the satisfaction of Laplace relation (4) on the void-surface. The config-
uration of the void-surface as obtained from the solution to problem (i) forms the basis for the solution to
problem (ii), wherein one solves for expansion increments over the void-surface due to mass removal or
deposition subject to the conditions that mass flux vanishes at points C and D (Fig. 1) owing to the sym-
metry of the void arrangement and loading. Solution to problem (ii) ensures mass conservation on the void-
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Fig. 2. Evolution of porosity as a function of the creep exponent n: f = 0.01, L,/R = 0.01, and y,, = 5 x 10~8 (no diffusion or surface

energy effects). All symbols denote results from the finite-element computations of the present work, and “K-PC” refers to the results
obtained using the theory of Kailasam and Ponte Castaneda (1996).
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surface as dictated by Eq. (3), as well as enforcement of the void surface diffusion Eq. (2). In problem (iii)
the bulk deformation problem is re-solved by calculating corrections to the displacement increments
obtained in problem (i) under applied displacement increments on the void-surface equal to the expansion
increments of the void surface obtained from the solution to problem (ii). Effectively, in problem (iii) the
solution to the matrix bulk deformation (displacement increments) and stresses as obtained in problem
(1) is modified in order for the incremental expansion of the void-surface due to void-surface diffusion over
the time increment to be accounted for. It should be emphasized that the three-step scheme outlined above
is an approximate one; in principle, one should perform successive bulk deformation and surface expansion
corrections until converged bulk displacement increments as well as surface expansion increments are
obtained for the time increment. However, since such a convergence study was not included in the present
study, care was taken to take appropriately small time increments so that the three-step iterative scheme
would still be accurate.

An updated Lagrangian formulation is employed wherein the configuration of the unit cell obtained by
updating the nodal coordinates with the displacement increments computed from the iterative numerical
scheme is taken to be the instantaneous reference configuration. In this formulation, the matrix Ny relates
the velocity v to the velocities at the nodes of a mesh representing the current, deformed geometry (anal-
ogous to the matrix N, which relates the velocity v to the nodal velocities of an undeformed mesh in a
small-strain formulation). In finite-element notation, the vectors for the velocity v and the velocity gradient
L = 0v/0x are written in terms of the nodal velocities as

v=Nv", and L=B.v", (5)

I
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Fig. 3. Evolution of void aspect ratio w = a»/a; as a function of the creep exponent n: fy = 0.01, L,/R=0.01, and ,, =5x 108 (no
diffusion or surface energy effects). All symbols denote results from the finite-element computations of the present work, and “K-PC”
refers to the results obtained using the theory of Kailasam and Ponte Castaneda (1996).
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where By is the matrix of spatial derivatives of the matrix Ny, the subscript L denotes large deformation,
and the matrices N and By depend on the deformed mesh coordinates.

In order to solve the bulk deformation problem (problem (i)), one starts with the principle of virtual
power for the unit cell, which in the present case after incorporating Eq. (4) is stated as

ovt
T,-v;‘ds:/a,-—’dA—&—/ Pokv ds. 6
/ST A kaxk Sp P ( )

Here T; is specified traction on the external boundary St (i.e. x, = L, in Fig. 1) of the unit cell, g;; are the
Cauchy stress components within the bulk region 4 occupied by the matrix, v; and v’ are the Cartesian
components and the component normal to the void-surface (measured positive pointing into the bulk mate-
rial) respectively of an arbitrary kinematically admissible velocity field in A4, x refers to the position of a
material point in the current configuration, and k is the curvature of the void-surface S, (Fig. 1).

Using the interpolation matrices of Eq. (5), the variational statement of Eq. (6) is recast into the follow-
ing system of nonlinear finite element equations that is to be solved for the vector of displacement
increments:

NP
el

/B{ch _/ NITds+> 7,p,=0. (7)
A Sr i=1

Here, T is the vector of externally applied tractions, N is the number of two-node edges on the void-sur-
face, and p; is a vector defined on the ith void-surface element-edge that is completely determined by the
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Fig. 4. Macroscopic deformation rate as a function of the creep exponent n: f, = 0.01, L,/R = 0.01, and ¢, = 5 x 10~8 (no diffusion or
surface energy effects). All symbols denote results from the finite-element computations of the present work, and “K-PC” refers to the
results obtained using the theory of Kailasam and Ponte Castaneda (1996).
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coordinates of the nodes that define that edge (Subramanian and Sofronis, 2001). Given the displacements
u, accumulated expansions a at time #,, and a time increment Az, Eq. (7) are solved for the displacement
increments Au using a Newton iteration scheme (Subramanian and Sofronis, 2001). The updated displace-
ments u + Au are taken as input in the solution to problem (ii) for the expansion increments Aea (Subrama-
nian and Sofronis, 2001). Finally, problem (iii) involves computing corrections dAu to the displacement
increments Au under the constraint that the displacement increment normal to the void-surface be equal
to the expansion increments Aea. Again, problem (iii) ensures that the expansion increments computed
on the void-surface are reflected in the displacements in the bulk of the solid, and hence in the computation
of the bulk stresses.

4. Numerical results

Following Needleman and Rice (1980), the coupling between the power-law creep deformation in the
bulk and the diffusion process over the void surface is expressed in terms of a parameter L, defined as

D,y i
L= (an). 8

The parameter L, has dimensions of length; when L, is large (e.g., large values of &,, or low values of the
applied stress S) compared to the void radius, the surface diffusion process is capable of transporting mass
over large distances and hence, is able to neutralize any void-surface curvature gradients set up by the creep
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Fig. 5. Evolution of porosity as a function of the creep exponent n: fo = 0.1, L,/R = 0.01, and y, = 5 X 10~® (no diffusion or surface
energy effects). All symbols denote results from the finite-element computations of the present work, and “K-PC” refers to the results
obtained using the theory of Kailasam and Ponte Castaneda (1996).
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deformation in the bulk. On the other hand, when the void radius R is much larger than L, mass transport
due to surface diffusion is negligible, and does not contribute to the overall deformation of the porous solid.
The effect of the void-surface energy on the overall deformation of the voided solid is characterized by the
dimensionless group (Subramanian and Sofronis, 2001) v, defined as

7p
wp TSR’ (9)
If y,, is negligibly small (Y, ~ 10~®) the effect of the void-surface tractions (cf. Eq. (4)) is much smaller than
that of the applied stress and the overall deformation is driven by the applied loads. If y, <1 but finite, the
surface energy effect can influence the deformation of the void when the magnitude of the void-surface trac-
tions compares to that of the applied stress, e.g., when , = 0.5. When 1, > 1, the effect of the stresses in
the bulk material due to the presence of the void-surface is greater than that of the applied stress, and hence
the surface energy effects are expected to dominate the overall deformation, that is, large energy is required
to be delivered by the applied loads to change the area of the void surface. The case of , = 1 provides an
interesting reference state. For a cylindrical shell subjected to tension on the external surface, and deform-
ing by creep alone under plane-strain conditions, the external tractions are just balanced by the stresses aris-
ing from the void when iy, =1. The external and internal loads just balance each other, and the
displacements are uniformly zero in the shell. If y, > 1, the shell expands, and the void grows indefinitely
under the influence of the external tension; if ¥, <1, the surface tension effects are greater, and the void
starts to collapse in on itself.
In the following, two sets of calculation results are presented: the first to study the effect of the creep
exponent n in the absence of any diffusion and surface energy effects, and the second to quantify the effect
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results obtained using the theory of Kailasam and Ponte Castaneda (1996).
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of the void-surface diffusion and surface energy on the overall deformation of the unit cell and the evolution
of the void shape and size. In each set, the time evolution of deformation was studied using unit cells with f;
values of 0.01 and 0.1 at time ¢ = 0. For each of these geometries, for the classical void growth problem (i.e.,
no surface diffusion or energy effects), analytical expressions were derived for the macroscopic rate of defor-
mation, as well as fand w using the theory of Kailasam and Ponte Castanieda (1996) as presented in Appen-
dix A and compared with the numerically obtained results. In the legends of the figures to be presented in
the remainder of this paper, these theoretical predictions are tagged by the abbreviation “K-PC”.

The finite element mesh used in the calculations was made up of 128 eight-noded quadrilateral elements
with the element edge increasing radially outward from the void-surface to the loaded boundary. A reduced
integration scheme was employed to enforce material incompressibility.

4.1. Effect of creep exponent in the absence of void-surface diffusion and void-surface energy effects

It follows from the celebrated work of Eshelby (1957) that an isolated ellipsoidal void in a linearly creep-
ing solid will always remain an ellipsoid under the action of a uniform stress state at infinity (Budiansky
et al., 1982). Hill (1965) has defined the Q tensor relating the strain-rate in the isolated void to the remotely
applied stresses and established its relationship to the Eshelby tensor S. Budiansky et al. (1982) have taken
advantage of this result to obtain cavity growth rates in the case of an axisymmetric void in an infinite lin-
early creeping solid. Recently, Ponte Castafieda and Zaidman (1994) and Kailasam and Ponte Castaneda
(1996) have obtained constitutive relations for nonlinearly creeping porous materials with finite porosities
taking into consideration the evolution of the porosity f and void aspect ratio in plane and axisymmetric
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Fig. 7. Macroscopic strain rate as a function of the creep exponent n: fo = 0.1, L,/R = 0.01, and y, = 5 X 10~8 (no diffusion or surface
energy effects). Al symbols denote results from the finite-element computations of the present work, and “K-PC” refers to the results
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strain situations (see Appendix A). Their theory recovers the Eshelby theory in the dilute (fy — 0) and linear
(n=1) limits. Numerical calculations based on the present numerical model with L,/R=0.01 and
Yp=0.5x 10~® and which are not reported in this paper for the sake of brevity also recover with an excel-
lent agreement these analytical results (Subramanian, 2001) at these limits (f, = 0.001 and n = 1). There-
fore, the case with Ly,/R=0.01 and y, = 0.5 x 107% in the present model was considered to represent void
deformation in the absence of surface diffusion and surface energy effects. The accuracy of the present numer-
ical model was also verified by additional numerical calculations in the nonlinear creep case through com-
parison (Subramanian, 2001) to results published by Needleman et al. (1995) for axisymmetric void growth
in a material with creep exponent of 5. Once again pure power-law creep in the absence of any surface
energy or diffusion effects was simulated accurately by setting L,/R = 0.01 and y, = 0.5 x 1078,

In the first set of calculations, the dimensionless numbers L,/R and y, were set to 0.01 and 5 x 1078 respec-
tively in order to make the surface diffusion and surface energy effects negligible, and thus, to isolate the effect
of the power-law creep mechanism in the bulk of the solid. The comparison between the numerically obtained
evolution of the porosity and the void aspect ratio and those computed from the theory for fo = 0.01 is illus-
trated in Figs. 2 and 3. In these and all the following figures wherever applicable, the strain measure used is the
logarithmic strain Ey = log(Ly/Ls|,_,). The time rates of change of w and f (Appendix Egs. (A.7) and (A.8))
predicted by the constitutive theory of Kailasam and Ponte Castaneda (1996) depend on the creep exponent in
exactly the same manner as do the overall deformation rates (Appendix Eq. (A.4)). As a result, when plotted
against a measure of the macroscopic strain, their predictions of fand w for all creep exponents collapse to the
same curve. For the case of linear creep (n = 1), the theoretical and numerically obtained values of fand w are
identical throughout the deformation history. However, as the creep exponent increases, the theoretical pre-
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Fig. 8. Evolution of porosity as a function of void-surface characteristics in the presence of diffusion and surface energy effects:
fo=10.01 and n = 2. All symbols denote results from the finite-element computations of the present work, and “K-PC” refers to the
results obtained using the theory of Kailasam and Ponte Castaneda (1996).
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dictions progressively underestimate both the porosity and the void aspect ratio. As seen from Fig. 3, the void
elongates in the direction of the applied load (w increases) for all values of #; in the finite-element results, the
higher the creep exponent, the more pronounced is the elongation. Moreover, the rate of change of w increases
with deformation for all creep exponents. Simultaneously, the porosity of the solid increases (Fig. 2), but ata
rate that decreases with increasing macroscopic strain.

For the same initial porosity, Fig. 4 shows the numerically computed macroscopic deformation rates in
the loading direction compared with the corresponding theoretical predictions. Here, the normalizing strain
rate is &y = (V/3/ 2)("+1)CS”, which results when the pure matrix material is subjected to the same plane-
strain loading conditions. For all creep exponents considered, the overall response of the cell is softer than
that of the void-free material (i.e. Dy /&, > 1). Both the numerical computations and the theory predict
more pronounced softening of the solid with increasing creep exponent. The numerically computed defor-
mation rates are in perfect agreement with the theoretical predictions for a linearly creeping material; but
for higher creep exponents, the theory of Kailasam and Ponte Castaneda (1996) predicts a stiffer overall
response than seen in the numerical computations. The variation of the normalized deformation rate with
strain is negligible for all creep exponents considered.

The corresponding trends for a solid with an initial porosity of 0.1 are shown in Figs. 5-7. Values of f
computed using the theoretical approach of Kailasam and Ponte Castaneda (1996) underestimate the
numerically obtained values, just as in the case of initial porosity 0.01. However, the theoretical predictions
for w agree very well with the values of the present model for n = 4, while significantly overestimating the
aspect ratio for other creep exponents. For the f, = 0.01 case (Fig. 3), the K-PC results for the evolution of
the aspect ratio w with strain agree well with the numerical results for » = 1. On the other hand, for the
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Fig. 9. Evolution of aspect ratio of an initially circular void as a function of void-surface characteristics in the presence of diffusion and
surface energy effects: fo = 0.01 and n = 2. All symbols denote results from the finite-element computations of the present work, and
“K-PC” refers to the results obtained using the theory of Kailasam and Ponte Castaneda (1996).
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fo=0.1 case (Fig. 6) the K-PC results for w agree well with the n = 4 numerical results. The apparent dis-
crepancy between the two cases is due to the fact that when plotted against strain, the K-PC curve shows no
sensitivity on the creep exponent, whereas the numerical results do. Certainly, unlike the K-PC results, the
numerical results do depend on the initial porosity studied.

Lastly, both the K-PC model and the present model predict a much softer macroscopic response for the
voided solid at this porosity level (f, = 0.1). However, the discrepancy between the theoretical values and
those of the finite-element calculations persists, and is once again the most for n = 4. It is interesting to note
that for n = 4, the macroscopic deformation rate shows a noticeable decrease with strain (Fig. 7), a trend
not observed for any other combination of creep exponent and initial porosity.

4.2. Effect of void-surface energy and void-surface diffusion

In order to study the effect of the void-surface energy and the surface diffusion process on void growth, a
second set of computations was performed employing the same two initial porosity values. The creep expo-
nent n was fixed at 2, and in order to investigate a wide range of surface energy and diffusion effects, L,/R
was set to either 0.01 (no surface diffusion) or 100 (extremely fast surface diffusion), and v, to either
5% 1078 (negligible surface energy effects) or 0.5 (significant surface energy effects). Values of W, greater
than unity were seen to be difficult from a computational standpoint leading to very slow convergence
of the three-step iterative scheme, and were therefore not pursued. As in the previous subsection, computed
results were compared with those of the theory of Ponte Castaneda and co-workers in the absence of void-
surface diffusion or surface energy effects.
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Fig. 10. Macroscopic deformation rate as a function of void-surface characteristics in the presence of diffusion and surface energy
effects: fo = 0.01 and n = 2. All symbols denote results from the finite-element computations of the present work, and “K-PC” refers to
the results obtained using the theory of Kailasam and Ponte Castaneda (1996).
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Computed porosity and aspect ratio values for the four combinations of L,/R and ,, for the case of
fo=20.01 are shown in Figs. 8 and 9 along with the theoretical predictions. The four material systems
exhibit distinct trends. Ly/R = 0.01 and ¢, = 5 x 1078 correspond to the “classical void growth” problem,
wherein both surface diffusion and surface energy effects are neglected, and the only deformation mecha-
nism is power-law creep in the bulk. Under these conditions, the porosity monotonically increases with
macroscopic deformation (Fig. 8) and the applied load continuously elongates the void in its direction
(Fig. 9). When L,/R =100 and y, = 5 x 1078, we have a system which is different from the classical void
growth systems only in that there is very rapid surface diffusion over the void-surface. From Fig. 8, it is
clear that the porosity increases at a rate that increases with macroscopic strain in this case, and the cor-
responding curve on Fig. 9 shows that the void always remains circular. Evidently, the very fast surface
diffusion neutralizes the curvature gradient set up by the bulk deformation. On the other hand, the case
of L,/R=0.01 and , = 0.5 (very high surface energy effect, but very slow surface diffusion) is a rather
intriguing one. The void shrinks in the transverse direction with increasing macroscopic strain (Fig. 9)—
the void shapes are similar to those of the classical case of void growth i.e., with negligible surface diffusion
and energy effects—Dbut since the surface energy effect is quite high, increasing the void-surface area is ener-
getically expensive, and as a result the porosity decreases with time (Fig. 8). Finally, when surface diffusion
is extremely fast, and there are significant surface energy effects (L,/R = 100 and y, = 0.5), the porosity
does not change, nor does the aspect ratio. The void maintains its shape throughout the course of defor-
mation, and the bulk material flows around it under the influence of the external loads. In general, the void
aspect ratio evolution (Figs. 9 and 12) for the four cases falls into either of two categories—when surface
diffusion is extremely fast, L,/R = 100, the void remains a circle, whereas w increases at an ever-increasing
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Fig. 11. Evolution of porosity as a function of void-surface characteristics in the presence of diffusion and surface energy effects:
fo=0.1 and n=2. All symbols denote results from the finite-element computations of the present work, and “K-PC” refers to the
results obtained using the theory of Kailasam and Ponte Castaneda (1996).
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rate with macroscopic strain when surface diffusion effects are negligible, L,/R = 0.01. Exactly the same
trends are observed for f'and w when f, = 0.1 (Figs. 11 and 12).

The macroscopic deformation rates for the four combinations of L,/R and y, for f, = 0.01 are shown in
Fig. 10. When both surface energy and surface diffusion effects are absent (L,/R = 0.01 and ¢, = 5 x 1079),
the voided solid is softer than a void-free one (D1, /é, > 1), and the deformation rate does not appear to
have any dependence on the magnitude of the macroscopic deformation. When the surface energy effect is
negligible (1, = 5 x 10~%) but the free surface diffusion is rapid (Ly/R = 100), the solid is softer than the
void-free material to begin with, and continues to progressively soften with increasing strain. On the other
hand, if the classical void is replaced by one with significant surface energy effects (L,/R = 0.01, ,, = 0.5),
the deformation rate shows an interesting trend. Even though the solid is softer than the void-free solid ini-
tially, it hardens with deformation, and the voided solid behaves like the void-free solid at a macroscopic
strain of 25%. The final case shown in Fig. 10 is when Ly/R = 100 and y,, = 0.5 (extremely fast surface dif-
fusion over a void-surface that is energetically expensive to deform); here, the macroscopic deformation
rate remains constant with deformation, as do the previously-discussed porosity and aspect-ratio. From
these curves, it appears that the surface energy parameter has more influence on the overall deformation
rates: the higher the surface energy parameter, the harder the voided material behaves. The surface diffusion
parameter certainly affects deformation rates, but its effect is secondary to that of the surface energy param-
eter. The corresponding deformation rate plots for fo = 0.1 are shown in Fig. 13. The trends in this plot are
the same as in the fy = 0.01, but the differences in deformation rates for the four cases shown are signifi-
cantly larger.
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Fig. 12. Evolution of aspect ratio of an initially circular void as a function of void-surface characteristics in the presence of diffusion
and surface energy effects: fo = 0.1 and n = 2. All symbols denote results from the finite-element computations of the present work, and
“K-PC” refers to the results obtained using the theory of Kailasam and Ponte Castaneda (1996).
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effects: fo = 0.1 and n = 2. All symbols denote results from the finite-element computations of the present work, and “K—PC”’ refers to
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5. Discussion

The present computations indicate that when surface energy and surface diffusion effects are negligible,
initial porosity and the nonlinearity of creep deformation of the matrix significantly affect the overall res-
ponse of voided materials. In line with expectations, when void-surface effects can be ignored, materials
with higher porosity are softer than the corresponding void-free materials, and the macroscopic softening
relative to the corresponding void-free material is more for material whose creep exponent is higher. Com-
putations indicate that the theory of Ponte Castaneda and co-workers performs very well in predicting the
macroscopic response of voided materials at relatively low porosities (Fig. 4). For an initial porosity of 0.1,
the theoretical predictions of Kailasam and Ponte Castaneda (1996) are still quite acceptable for low creep
exponents (see Fig. 7) although the discrepancy between the theoretical predictions and computed values is
approximately 25% for n = 4. For all cases except that of a linear material with very low initial porosity, the
theory underestimates the evolving porosity (Figs. 2 and 5). At an initial porosity fo = 0.01, the theoretical
predictions of the void aspect ratio are more accurate for the lower creep exponent (Fig. 3), whereas at an
initial porosity fo = 0.1, the predictions are more accurate at higher creep exponents (Fig. 6).

Consideration of void shape changes throughout the course of straining serves as an aid in rationalizing
the observed effects of the void-surface tractions and void-surface diffusion process. Figs. 14-17 show the
void profiles at different stages of macroscopic straining for the four combinations of surface diffusion and
surface energy effects discussed in the previous section when f, = 0.001. Each set of profiles is strikingly dif-
ferent from any of the others.
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Fig. 14. Void profiles at various stages of straining in the presence of diffusion and surface energy effects: fo = 0.001, L,/R=0.01,
Yp=5x 1078, and n = 2. This case of very slow surface diffusion and very small surface energy effects corresponds to “classical” void
growth studies in which the void-surface was traction-free.

In the case of low Ly/R and ,, (i.e., L,/R=0.01, y, =5x 10%), since the diffusion process is much
slower than the creep in the matrix, the distortions set up by the latter persist; further, such distortions
are energetically inexpensive due to the low i, value. Progressive elongation of the void in the loading
direction (Fig. 14) ensues, as the void continues to align itself parallel to the applied load. If the surface
energy parameter y, is extremely low, i, =5X 10~%, and surface diffusion is very fast, L,/R =100,
(Fig. 15), the void retains its circular shape but steadily increases in size, resulting in continuously increasing
porosity. When the surface diffusion process is extremely fast, changes in curvature are quickly neutralized
and thus, the void resists distortion of its shape. Since the applied load is not capable of elongating the void
along the loading direction, the solid exhibits enhanced transverse strength. As the void radius increases
and the lateral face of the unit cell is drawn in to maintain creep incompressibility, the load-bearing liga-
ment shrinks leading to the progressively increasing macroscopic deformation rates as those seen in Figs. 10
and 13 for porosities 0.01 and 0.1, respectively.

For very slow surface diffusion and very high surface energy parameter (L,/R = 0.01,i), =0.5), one
observes (Fig. 16) that even though the void is free to change its shape, changing its area is not feasible
because the surface energy is extremely high in relation to the applied load and void size, making such
changes energetically very expensive. As the macroscopic straining continues, curvature gradients become
more severe, with the curvature at the pole of the void increasing constantly (surface becoming more curved
locally), while that at the equator decreases continuously. Once the curvature at the pole reaches a high
enough value, it becomes prohibitively expensive from an energetic standpoint to increase the void area
by moving the pole of the void in the loading direction. As a result, the void effectively locks up at the pole
even though the solid itself continues to deform. At the equator, the void-surface still moves inwards,
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Fig. 16. Void profiles at various stages of straining in the presence of very slow surface diffusion and strong surface energy effects:
fo =0.001, L,/R=0.01, y,=0.5, and n =2.
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Fig. 17. Void profiles at various stages of straining in the presence of both rapid diffusion and strong surface energy effects: fo = 0.001,
L,/R=100, y,=0.5, and n =2.

decreasing the cross-sectional area of the void leading to decreasing porosity as shown in Figs. 8 and 11,
and increasing aspect ratio as shown in Figs. 9 and 12. As the void area shrinks, further deformation of
the void becomes progressively difficult leading to decreasing overall deformation rates as in Figs. 10
and 13.

When the diffusion process over the void is capable of transporting mass over large distances compared
to the void radius and the changes to the void length (i.e. area per unit length in the 3-direction) are ener-
getically very expensive (L,/R = 100,, = 0.5), the void-surface shows extremely small amount of deforma-
tion (Fig. 17) even at a macroscopic strain of 0.4. One is then left with an almost incompressible void in an
incompressible matrix resulting in constant porosity at all stages of macroscopic straining. As seen in Figs.
10 and 13, the normalized macroscopic deformation rate is also constant, although it increases as the initial
porosity of the solid increases. Macroscopically, the behaviors of the solid with such a void and a solid
block of the same material are very much alike, with the only observable difference being in the magnitude
of the deformation rate.

For all the cases of initial porosity studied, computations were not pursued beyond the range of E,,
shown in the plots due to mesh distortion at large deformations of the unit cell. The range of E,, shown
decreases with increasing initial porosity for the obvious reason that mesh distortion becomes more pro-
nounced for larger values of fy. Based on the trends shown in Figs. 10 and 13, it appears that the normalized
macroscopic deformation rate D» /&, may fall below 1 for a material with L,/R =0.01 and , = 0.5 at
macroscopic strains larger than the ones shown. Thus, one arrives at the following interesting and surpris-
ing result: at large enough strains, a solid with a high void-surface energy parameter will be harder to
deform than a void-free solid, i.e. such a void acts as a reinforcement. Further, it is the interaction of
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the void-surface energy effect with the creep deformation in the matrix that acts as the reinforcing mechanism.
Recall that surface diffusion is extremely slow in this case, and therefore it does not contribute to the observed
behavior.

Comparing Figs. 10 and 13, in which the only difference in inputs is the initial porosity, one clearly sees
that increasing porosity augments the effect of surface energy on void growth. In fact, at higher porosity,
the deformation rates are higher for every combination of L,/R and y,, studied. Both Figs. 10 and 13 show
an appreciable decrease of the macroscopic deformation rate when y, = 0.5 and L,/R = 0.01. It is interest-
ing that in the absence of any void-surface energy or diffusion effects (see Fig. 7 for f, = 0.1) the macro-
scopic deformation rate also shows a decrease for all creep exponents, with the decrease being most
noticeable for n =4. Comparing the macroscopic deformation rates for n =2, one clearly sees from
Fig. 13 that with L,/R = 0.01 and y, = 0.5 the effect of decreasing deformation rate is significantly magnified
relatively to the case of no void-surface energy or diffusion effects. Thus, regarding the interaction between
the surface energy effect and the creep exponent, one may infer the following: (i) there is a slight decrease in
deformation rate i.e. the porous solid hardens slightly with strain, with the amount of hardening increasing
with creep exponent; (ii) there is a much sharper decrease when the surface energy effects are very high and
surface diffusion is very slow. In short, the creep exponent modulates the surface energy effect slightly.

It can be said that in a voided material with a large surface energy parameter ,, the tractions acting on
the void-surface compete with the externally applied loads on deforming the void. This mechanism of inter-
nal tractions, which is absent in the homogeneous material case, may over-ride the external loads tending to
enlarge the void, thus leading to the “surprising” result of void shrinkage. Using strain gradient plasticity in
rate independent solids, Fleck and Hutchinson (1997) and Liu et al. (2003) found that nanosized voids are
very hard to enlarge in comparison to micron-sized voids. Ahn et al. (2005) investigating void growth by
dislocation loop emission found that the smaller the void radius, the larger the external load required for
the punching out of the loops from the void-surface due to the larger image stress and surface energy effect
resisting the emission of the loops as the void radius decreases. A similar result was also reached by
Lubarda et al. (2004) in the case of single edge dislocations emitted from a void. Thus, by associating
the large surface energy parameter \,, to a small void radius R (Eq. (9)), one concludes that the present
study’s result on void shrinkage is in line with the increased resistance to deformation observed in the case
of nanosized voids in continuum and dislocation plasticity studies of void growth.

The present numerical-model approach to the study of the effects of void-surface energy and void-sur-
face diffusion on void growth is extremely relevant to many technological applications involving high tem-
perature deformation. By way of example, one may mention the diffusive cavitation of grain-boundaries by
creep deformation at high temperatures. The celebrated work of Needleman and Rice (1980) analyzed void
growth based on equilibrium void-shapes resulting from extremely fast void-surface diffusion while it
ignored void-surface curvature effects. Another field of application of the present model is the deformation
of sintered/compacted solids with closed porosities. An extended literature review on the pertinence of the
void-surface effects on powder sintering can be found in the work of Subramanian and Sofronis (2001).

6. Closure

The finite deformation of a power-law creeping material containing initially circular voids has been stud-
ied using the finite-element method under plane-strain tension. The effect of initial porosity and creep expo-
nent on the microstructural variables, as well as the overall macroscopic deformation rate have been
quantified for the case of negligible void-surface energy and diffusion effects. The theory of Kailasam
and Ponte Castaneda (1996) has been shown to perform quite well for low porosities and low creep expo-
nents, while at higher initial porosities and creep exponent values, the theory still yields acceptable results.
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Void growth at high temperatures is affected by the competing action of nonlinear creep deformation in
the surrounding matrix and surface diffusion driven by void-surface curvature gradients. Finite element
analysis of the coupled problem indicates that microstructural variables (porosity and void aspect ratio),
as well as macroscopic deformation rates are strongly affected by the relative strengths of the void-surface
energy effect and void-surface diffusion process vis-a-vis the rate of creep deformation in the bulk of the
solid. A rich variety of solutions has been revealed, and which solution is obtained for a given material,
loading conditions, and geometry depends on the strength of the void-surface diffusion and surface energy
effect relative to the applied load and the creep deformation characteristics of the matrix material. It should
be pointed out that the classical void growth models which ignore both the surface energy and surface dif-
fusion effects recover only one branch of the solutions revealed by the present study. In essence, the diffu-
sion process controls the shape of the void: if diffusion is fast, the void is always circular; if it is extremely
slow, the void is free to elongate along the loading direction. On the other hand, the size changes of the void
are determined by the surface energy parameter: if , is small (energetically inexpensive to effect void-sur-
face area changes), the void is free to expand, whereas a high value of i, places a high price on increases in
void size.

The evolution of void shape and size corresponds directly to distinct macroscopic deformation patterns.
When void-surface diffusion is extremely fast, along with a high surface energy parameter, the void does not
deform even at large macroscopic strains, resulting in a steady state macroscopic deformation rate that
depends only on the initial porosity. In the case of significant surface energy effects with an accompanying
slow surface diffusion process, the voided material becomes progressively stiffer macroscopically due to
increasing difficulty in distorting the void, leading possibly to the surprising scenario of voids acting as rein-
forcement. Interestingly, in this case, the voided material may become stronger than the void-free material
at large enough macroscopic strains. When both surface energy and surface diffusion effects are negligible,
the void grows stably in the loading directions and the macroscopic deformation rate increases with increas-
ing initial porosity. Lastly, for the case of very fast surface diffusion and negligible surface energy effects, the
void expands in all directions despite the fact that loading is uniaxial. Further, the voided solid continues to
soften macroscopically as the porosity steadily increases.
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Appendix A. Void growth in a creeping solid under plane-strain conditions with no surface diffusion or surface
energy effects

One can calculate the effective compliance M of a linearly creeping porous solid as a function of its
porosity through (Kailasam and Ponte Castaneda, 1996)

M:{H%(I—SW}M, (A1)

where I is the identity tensor, M is the matrix compliance tensor (inverse of the stiffness tensor), S is the
Eshelby tensor and f'is the porosity. For the case of plane strain deformation of a linearly creeping material
(whose creep modulus is u) with an initially circular void, the above expression yields
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The above effective compliance of the linear material is used to compute the constitutive response of the
nonlinearly creeping solid with voids. Specifically, the effective potential U(s) (Kailasam and Ponte Castan-
eda, 1996) for the nonlinearly viscous porous material is calculated in terms of the material-independent
tensor m = 3uM to be

T(a 1 U\ 7 rare g2t
U(G):3u(n+1) (l—f) [6'ma] ”, (A.3)

from which the effective rate of deformation of the porous solid is derived through the relation D = 0U /dc.
Thus, for the macroscopic straining considered in this work, the theory of Kailasam and Ponte Castaneda
(1996) yields the following average deformation rates:

n+1 n—1
—_— 3\ 2 " 1 21\ 2
b= (4) s (l—f)”(l+W> /
n+1 n—+1 (A.4)
= 3 2 ; 1 2\ 2
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The rate of deformation inside the voids is related to the overall rate of deformation through the so-called
strain-rate concentration tensor A", such that D' = A'D. Kailasam and Ponte Castaneda (1996) report A"
for a porous solid to be

A =1-(1-s] (A.5)

the use of which in conjunction with the relationship of the previous sentence and Eq. (A.4) yields the rate
of deformation in the void as

n—+1 n—1
3 2 1 2f 2
DV —_ = n___ - 1 -~
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Since the void aspect ratio changes with time according to the relation w = w(D3, — Dy} ), and creep incom-
pressibility dictates that /' = /(1 — Dy), one arrives at the following system of coupled ordinary differential
equations for f and w:

n+1 n—1

3\ 2 o Ltw (0 27\ 2
W= 2(1) S Ty <1 +7> , (A7)
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Note that from Eq. (A.7), the evolution equation for w for the case of a hole in an infinite, linearly viscous

medium (f— 0, and » = 1) reduces to

5 3Cs
2

and

(1+w). (A.9)
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